M1.B

M2.D

M3.C

M4. (a) (i) Avogadro's number/constant of molecules/particles/species / 6×10^{23} [Not 'atoms']

1
Or same number of particles as (there are atoms)
[Not molecules]
in $12 .(00) \mathrm{g}$ of ${ }^{12} \mathrm{C}$
1
(ii) Moles $\mathrm{O}_{2}=\frac{0.350}{32}\left(=1.09 \times 10^{-2} \mathrm{~mol}\right)$
$=29\left(\times 1.09 \times 10^{-2}\right)$
[Accept answers via 4 separate mole calculations]
$=0.316-0.317 \mathrm{~mol}$ [answer to $3+\mathrm{sf}$]
[Mark conseq on errors in M1/M2] (1)
(iii) Moles of nitroglycerine $=4 \times 1.09 \times 10^{-2} \quad(=0.0438 \mathrm{~mol})$
[Mark conseq on their moles of O_{2}]
M_{r} of nitroglycerine $=227$ or number string

Moles of nitroglycerine $=227 \times 0.0438=9.90-9.93(\mathrm{~g})$
[answer to 3+ sf]
[If string OK but final answer wrong then allow M6 but AE for M7]
[Mark conseq on error in M] [Penalise wrong units]
[Penalise sig. fig. errors once only in whole question]
(b) $\mathrm{pV}=\mathrm{nRT}$ or $\mathrm{pV}=\frac{m \mathrm{RT}}{\mathrm{V}}$ or $\mathrm{p}=\frac{\frac{n \mathrm{R} T}{\mathrm{~V}}}{}$

$=7980093$ or 7980 or 7.98
[ignore s.f.]
units $=\mathrm{Pa}$ or kPa or $\mathrm{MPa} \quad$ (as appropriate)
[If error in conversion from Pa, treat as a contradiction of the units mark]
[If transfer error, mark conseq but penalise M2]
[If data from outside of above used, penalise M2 and M3] [If pV expression incorrectly rearranged, penalise M2 and M3]
[if $T=1373 K$ used, penalise M2]
$\mathrm{CCl}_{4} \longrightarrow \mathrm{CCl}_{3} \cdot+\cdot \mathrm{Cl}$
(b) $\mathrm{Cl} \cdot+\mathrm{O}_{3} \longrightarrow \mathrm{ClO} \cdot+\mathrm{O}_{2}$

(c) M_{r} of $\mathrm{CF}_{3} \mathrm{Cl}=104.5$

Moles freon $=1.78 \times 10^{-4} \times 10^{3} / 104.5=1.70 \times 10^{-3}$

Number of molecules $=1.70 \times 10^{-3} \times 6.02 \times 10^{23}=1.02 \times 10^{21}$

Molecules in $500 \mathrm{~cm}^{3}=\left(1.02 \times 10^{21} \times 500 \times 10^{-6}\right) / 100=5.10 \times 10^{15}$
Allow answer in the range $5.10-5.13 \times 10^{15}$
Answer must be given to this precision

M6. (a) (i) $\underline{0.0212}$
Need 3 sig figs
Allow correct answer to 3 sig figs eg 2.12×10^{-2}
(ii) 0.0106

Mark is for (a)(i) divided by 2 leading to correct answer 2 sig figs
(iii) $\mathrm{M}_{\mathrm{r}}=\underline{100.1}$
1.06 g

Allow 100.1 as 'string'
Need 3 sig figs or more
Consequential on (a)(ii) x 100(.1)
(iv) Neutralisation or acid / base reaction

Allow acid / alkali reaction
Apply list principle
(b) (i) $T=304(\mathrm{~K})$ and $\mathrm{P}=100000(\mathrm{~Pa})$

Only T and P correctly converted

$$
\frac{100000 \times 3.50 \times 10^{-3}}{8.31 \times 304} O R n=\frac{P V}{R T}
$$

0.139 (mol)

Allow $0.138-0.139$
(ii) $0.0276-0.0278(\mathrm{~mol})$

Allow answer to (b)(i) divided by 5 leading to a correct answer
Allow 0.028
(c) $4.20 \mathrm{~g} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \mathrm{H}_{2} \mathrm{O}$
$\frac{4.20}{164(.1)} \quad \frac{1.84}{18}$
Mark is for dividing by the correct Mr values
M2 and M3 dependent on correct M1
$0.0256 \quad 0.102$
M2 can be awarded here instead
1 : 3.98
$x=4$
If $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ seen with working then award 3 marks Credit alternative method which gives $x=4$

M7.B

M8.(a)

Method 1
Mass of $\mathrm{H}_{2} \mathrm{O}=4.38-2.46$

Method 2

Percentage of $\mathrm{H}_{2} \mathrm{O}=44 \%$
($=1.92 \mathrm{~g}$)

If there is an $A E$ in $M 1$ then can score $M 2$ and $M 3$
If M_{r} incorrect can only score M1

ZnSO_{4}	$\mathrm{H}_{2} \mathrm{O}$	ZnSO 4	H 2 O	
$\underline{2.46}$	$\underline{1.92}$	$-\underline{56}$	$\underline{44}$	
161.5	18	161.5		18
$(0.0152$		$0.107)$	$(0.347$	
$(1$	$:$	$7)$	(1)	$2.444)$
$x=7$		$x=7$	$7)$	

If $x=7$ with working then award 3 marks.
Allow alternative methods.
If M1 incorrect due to $A E$, M3 must be an integer.
(b) Moles $\mathrm{HCl}=\underline{0.12(0)}$

If $M 2$ incorrect then CE and cannot score M2, M3 and M4.
mass $\mathrm{ZnCl}_{2}=0.06 \times 136.4$
Allow $65.4+(2 \times 35.5)$ for 136.4
$=\underline{8.18(4)}(\mathrm{g})$ OR $\underline{8.2}(\mathrm{~g})$
Must be to 2 significant figures or more.
Ignore units.
1
(c) Moles $\mathrm{ZnCl}_{2}=\frac{10.7}{136.4}(=0.0784)$

OR moles $\mathrm{Zn}=0.0784$
Mass Zn reacting $=0.0784 \times 65.4=(5.13 \mathrm{~g})$
M2 is for their M1 $\times 65.4$
\% purity of $\mathrm{Zn}=\frac{5.13}{5.68} \times 100$
M 3 is $\mathrm{M} 2 \times 100 / 5.68$ provided M 2 is <5.68
= $\underline{90.2} \%$ OR $\underline{90.3} \%$
Allow alternative methods.
M1 = Moles $\mathrm{ZnCl}_{2}=\underline{10.7}$ (=0.0784) 136.4

M2 = Theoretical moles $\mathrm{Zn}=\underline{5.68(=0.0869)}$ 65.4
$M 3=M 1 \times 100 / M 2=(0.0784 \times 100 / 0.0869)$
$M 4=\underline{90.2 \%}$ OR $\underline{90.3 \%}$
(d) Ionic

$$
\text { If not ionic } C E=0 / 3
$$

Strong (electrostatic) attraction (between ions)
between oppositely charged ions / + and - ions / F^{-}and Zn^{2+} ions If IMF, molecules, metallic bonding implied $C E=0 / 3$

